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1. Introduction

Explaining the microscopic origin of black holes entropy is one of the important tasks of

any theory of quantum gravity. Much progress towards achieving this goal in the frame-

work of string theory has been obtained for supersymmetric charged black holes in various

dimensions. One such class of extremal black holes characterized by electric and magnetic

charges (qI , p
I) exists in compactification of type II string theory on Calabi-Yau 3-folds

(CY3) (for a review see [1, 2]). These black holes are obtained by wrapping D-branes

around cycles in CY3. Their near horizon geometry is AdS2 ×S2 ×CY3, where the moduli

of the Calabi-Yau 3-fold are fixed on the horizon by the attractor equation in terms of

the charges. Recently much work has been done on extremal non-supersymmetric black

holes [3].

The four-dimensional low energy effective action of type II strings compactified on CY3

is given by N = 2 Poincaré supergravity coupled to N = 2 abelian vector multiplets. The

macroscopic extremal black holes are asymptotically flat charged supersymmetric solutions

of the field equations. At leading order in the curvature, the entropy of the black holes is

given by the Bekenstein-Hawking area law S = A
4 , where A is the area of the event horizon

and is determined in terms of the charges by the attractor mechanism. With subleading

R2-terms included, the entropy of these macroscopic black holes has been computed using

the generalized entropy formula of Wald [4].

With one electric charge q0 and pA magnetic charges1 one gets the entropy [5]

S = 2π
√

q0 (DABCpApBpC + 256DApA) , (1.1)

1We consider type II compactification with A = 1, . . . , b2 and b2 is the second Betti number of CY3.
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where DABC and DA are respectively proportional to the triple intersection numbers and

the second Chern class numbers of the CY3. The first term in (1.1) is the Bekenstein-

Hawking area law, while the second term is the R2 generalized entropy formula correction.

The aim of this paper is to study near-extremal N = 2 black hole solutions and their

entropy with R2-terms included. These are non-supersymmetric solutions, the horizon is

no longer AdS2 × S2 and the attractor mechanism no longer works. The moduli of the

CY3 are not fixed at the horizon in terms of the charges and the entropy depends on

the asymptotic values of the moduli. However, when considering the Bekenstein-Hawking

entropy one notices that it has the same structure as that of the extremal ones with charges

being shifted [6, 7]

q0 → q0 +
1

2
µh0, pA → pA +

1

2
µhA , (1.2)

where µ is the non-extremality parameter and (h0, h
A) correspond to the asymptotic values

of the moduli. A natural question to ask is whether this property of the near-extremal

Bekenstein-Hawking entropy holds with the R2 generalized entropy formula (1.1). Indeed,

we will provide evidence that this is the case for a class of near-extremal charged black holes

with DABCpApBpC = 0, i.e. having an extremal limit with a vanishing classical horizon

area.

A relation between the indexed entropy of the BPS N = 2 black holes and the topo-

logical string partition function, evaluated at the attractor point has been proposed in [8]

ZBH = |Ztop|2 . (1.3)

We suggest that one may still use the relation (1.3) for this class of near-extremal N = 2

black holes, with the shift in the charges (1.2). If correct, one gets all the perturbative

F -terms corrections to the near-extremal N = 2 black holes entropy using the topological

string partition function. We note that this is unlikely to be correct for general near-

extremal N = 2 black holes. Indeed, we find near-extremal R2 horizon solutions with

DABCpApBpC 6= 0, which do not exhibit this entropy structure.

The paper is organized as follows: In section 2 we will give a brief review of four-

dimensional N = 2 supergravity with R2-terms. In section 3 we derive a generalized Wald

entropy formula for the near-extremal N = 2 black holes with R2-terms. In section 4 we

present the horizon geometry of near-extremal N = 2 black hole and compute the entropy.

We will first review previous results without R2-terms, and then present the new results

with R2-terms.

In the paper we will use a = 0, 1, 2, 3 to denote the tangent space indices corresponding

to the indices µ of the space-time coordinates (t, r, φ, θ).

2. R
2-terms in N = 2 supergravity — A brief review

We will consider N = 2 Poincaré supergravity coupled to NV abelian N = 2 vector

multiplets. N = 2 Poincaré supergravity can be formulated as a gauge fixed version of

N = 2 conformal supergravity coupled to an N = 2 abelian vector multiplet (see [1] for a

comprehensive review).
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The on-shell field content of the vector multiplet is a complex scalar, a doublet of Weyl

fermions, and a vector gauge field. We will consider NV + 1 vector multiplets, and will

denote by XI , I = 0 . . . NV , the scalars (moduli) in the vector multiplets. The couplings

of the vector multiplets are encoded in a prepotential F (XI), which is a homogenous of

second degree holomorphic function.

The N = 2 conformal supergravity multiplet (Weyl multiplet) is denoted by W abij ,

where i, j are SU(2) indices. It consists of gauge fields for the local symmetries: translations

(P ), Lorentz transformations (M), dilatations (D), special conformal transformations (K),

U(1) transformations (A), SU(2) transformations (V ), and supertransformations (Q,S). In

the theory without R2-terms, the Weyl multiplet appears in the Lagrangian through the

superconformal covariantizations. In order to get the R2-terms, one adds explicit couplings

to the Weyl multiplet. This appears in the form of a chiral multiplet, which is equal to

the square of the Weyl multiplet W 2. The lowest component of the chiral multiplet is a

complex scalar denoted Â. The prepotential F (XI , Â) describes the coupling of the vector

multiplets and the chiral multiplet.

We consider a prepotential of the form:

F =
DABCXAXBXC

X0
+

DAXA

X0
Â , (2.1)

where DABC ,DA are constants and A,B,C = 1 . . . NV . This prepotential arises, for in-

stance, from a compactification of Type IIA string theory on a Calabi-Yau three-fold. The

coefficients in the prepotential are topological data of the Calabi-Yau three-fold: −6DABC

are the triple intersection numbers (symmetric in all indices), and −1536DA are the second

Chern class numbers. The first term in the prepotential arises at tree-level in α′ and in gs.

The second term arises at tree-level in α′ and is at one-loop in gs. It describes R2 couplings

in the Lagrangian. In the large Calabi-Yau volume approximation Im(XA/X0) ≫ 1, all

other corrections are suppressed and the prepotential consists of only these two terms.

We will assume this approximation to be valid near the horizon by an appropriate hierar-

chy of charges. The equations of motion should later be truncated to the same order of

approximation. One introduces the notation

FI ≡ ∂

∂XI
F (XI , Â), F bA

≡ ∂

∂Â
F (XI , Â) , (2.2)

and similarly for higher order and mixed derivatives.

The bosonic part of the N = 2 conformal supergravity Lagrangian is

8πe−1L = − i

2
(X̄IFI − XI F̄I)R (2.3)

+

(
iDaX̄IDaFI +

i

4
FIJ(F−I

ab − 1

4
X̄IT−

ab)

(
F ab−J − 1

4
X̄JT ab−

)

+
i

8
F̄I

(
F−I

ab − 1

4
X̄IT−

ab

)
T ab− +

i

32
F̄ T−

abT
ab− − i

8
FIJY I

ijY
ijJ

− i

8
F bA bA

(εikεjlB̂ijB̂kl − 2F̂−
abF̂

ab−) +
i

2
F̂ ab−F bAI

(
F−I

ab − 1

4
X̄IT−

ab

)
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− i

4
B̂ijF bAI

Y ijI +
i

2
F bA

Ĉ + h.c.

)

+ i(X̄IFI − XI F̄I)

(
DaVa −

1

2
V aVa −

1

4
MijM̄

ij + DaΦi
αDaΦ

α
i

)
.

e ≡
√

|det(gµν)| where gµν is the curved metric, R is the Ricci scalar, Da is the covariant

derivative with respect to all superconformal transformations, Da is the covariant derivative

with respect to P,M,D,A, V -transformations, F−I
ab is the anti-selfdual part of the vector

field strength, T−
ab is an anti-selfdual antisymmetric auxiliary field of the Weyl multiplet,

i, j, . . . = 1, 2 are SU(2) indices, Y I
ij are auxiliary scalars of the vector multiplet, and

V a,Mij ,Φ
i
α

2 are components of a compensating nonlinear multiplet with α = 1, 2. The

hatted fields are components of the chiral multiplet W 2, with their bosonic parts given by

θ0 Â = T−
abT

ab− (2.4)

θ2 B̂ij = −16εk(iR(V )kj)abT
ab−

F̂ ab− = −16R(M) ab
cd T cd−

θ4 Ĉ = 64R(M) ab−
cd R(M)cd−ab + 32R(V ) k−

ab l R(V )abl−
k − 16T ab−DaD

cT+
cb .

T+
ab = T̄−

ab is the selfdual counterpart of the auxiliary field, R(V ) k
ab l is the field strength of

the SU(2) transformations, R(M) cd
ab is the modified Riemann curvature and R(M) cd−

ab

is the anti-selfdual projection in both pairs of indices. The bosonic part of R(M) cd
ab is

given by3

R(M) cd
ab = R cd

ab − 4f
[c

[a δ
d]
b] +

1

32
(T−

abT
cd+ + T+

abT
cd−) , (2.5)

where R cd
ab is the Riemann tensor, and f c

a is the connection of the special conformal

transformations, determined by the conformal supergravity conventional constraints, with

the bosonic part:

f c
a =

1

2
R c

a − 1

4

(
D +

1

3
R

)
δc
a −

i

2
⋆R(A) c

a +
1

32
T−

abT
cb+ , (2.6)

where R c
a is the Ricci tensor, D is an auxiliary real scalar field of the Weyl multiplet, and

⋆R(A)ab is the Hodge dual of the field strength of the U(1) transformations. Note that the

T 2-terms in R(M) cd
ab cancel exactly the T 2 contribution from f c

a .

The auxiliary field D is constrained by a constraint on the nonlinear multiplet:

DaVa − D − 1

3
R − 1

2
V aVa −

1

4
MijM̄

ij + DaΦi
αDaΦ

α
i = 0 , (2.7)

where we have assumed a bosonic solution. Note that taking the constraints into account

we have
∂f f

e

∂R cd
ab

∼ 1

2
δa
e δf

c δb
d , (2.8)

where the r.h.s. must be constrained to have the same symmetries as the l.h.s. .

2Φα
i is the hermitian conjugate of Φi

α.
3We have assumed the K-gauge fixing which will be defined later (2.9).
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In order to obtain Poincaré supergravity one gauge fixes the bosonic fields (in addition

there is a gauge fixing of fermionic fields):

K−gauge : ba = 0

D−gauge : i(X̄IFI − XI F̄I) = 1

A−gauge : X0 = X̄0 > 0

V −gauge : Φi
α = δi

α , (2.9)

where ba is the connection of the dilatations.

In addition to F -terms corrections to the N = 2 effective Lagrangian, one generally

expects D-term corrections which may be relevant already in the R2-level. For supersym-

metric black holes, it is conjectured that such terms do not contribute to the entropy [8].

3. Entropy formula with R
2-terms

With the addition of R2-terms to the Lagrangian, the Bekenstein-Hawking entropy formula

is no longer valid. A generalization of the area law has been derived by Wald [4]. The

Bekenstein-Hawking area is recovered when taking the Einstein-Hilbert Lagrangian. We

work with the N = 2 supergravity Lagrangian, which does not depend on derivatives of

the Riemann tensor, and we further assume the black holes to be static and spherically

symmetric. The generalized entropy formula in this case is

S = 2πAεabε
cd ∂(e−1L)

∂R cd
ab

, (3.1)

where A is the (modified) area of the horizon, ε01 = −ε10 = 1, L is the Lagrangian density,

and the expression is evaluated on the event horizon. In the derivative, we treat the

Riemann tensor and metric as being independent and take into account the supergravity

constraints on the fields. Our derivation is similar to that of [5, 1].

We get

∂(e−1L)

∂R cd
ab

= − 1

16π
δa
c δb

d +

− 1

8π
Im

(

F bAI

(
F−I

ef − 1

4
X̄IT−

ef

)
∂F̂ ef−

∂R cd
ab

+ F bA bA
F̂−

ef

∂F̂ ef−

∂R cd
ab

+ F bA

∂Ĉ

∂R cd
ab

)

.

This expression can be simplified to:4

∂(e−1L)

∂R cd
ab

= − 1

16π
δa
c δb

d+
1

π
Im

[(
2F bAI

(
F−I

pq − 1

4
X̄IT−

pq

)
Tmn−−32F bA bA

R(M)xy
pqT

−
xyT

mn−

−16F bA
R(M)mn−

pq

)
∂R(M) pq

mn

∂R cd
ab

− F bA
T an−T+

cnδb
d

]
, (3.2)

4Using the identity for anti-selfdual tensors: Rmn−

pqR
pq−

mn = Rmn−

pqR
pq

mn .
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where m,n, . . . = 0 . . . 3. The last term is the same as in the supersymmetric case.5

We have the relation:

R(M)mn
pq = Cmn

pq + Dδ
[m
[p δ

n]
q] − 2δ

[m
[p

⋆R(A)
n]

q] , (3.3)

where Cab
cd is the Weyl tensor. In addition, from the definition of R(M) cd

ab we get:

∂R(M) pq
mn

∂R cd
ab

∼ δa
mδb

nδp
c δ

q
d − 2δ

[p
[mδa

n]δ
q]
c δb

d , (3.4)

where the r.h.s. must be constrained to have the same symmetries as the l.h.s. , and we

used D = −1
3R + . . . due to the nonlinear multiplet constraint (2.7).

Substituting all expressions, we obtain the generalized entropy formula for the non-

extremal R2 case:

S =
1

4
A − 4A · Im

(
F bA

(|T−
01|2 + 16C0101 + 16D)

)
, (3.5)

where we have used spherical symmetry, everything is evaluated on the event horizon, and

Â = −4(T−
01)

2. This formula differs from the extremal R2 case by the C0101 and D terms,

where also

Â = −256πA−1 . (3.6)

Note that as in the extremal R2 case, the entropy does not depend on the higher order

derivatives F bAI
, F bA bA

.

4. Near-extremal N = 2 black holes

4.1 Near-extremal N = 2 black holes without R2-terms

We will start by discussing non-extremal black holes in N = 2 supergravity without R2-

terms [6, 7]. The metric is given by

ds2 = −e−2U(r)f(r)dt2 + e2U(r)(f(r)−1dr2 + r2dΩ2) , (4.1)

where dΩ2 = dθ2 + sin2 θdφ2, and

f(r) = 1 − µ

r
, (4.2)

and µ is a non-extremality parameter.

The background is non-supersymmetric, with 1
2µ being the difference between the

ADM mass and the BPS mass. The event horizon is located at r = µ and the inner

horizon at r = 0. Unlike the extremal black holes, the event horizon geometry is not

AdS2×S2.

5Using that DaDcT+
cb = DaD

cT+
cb − f c

a T+
cb, for a bosonic solution. The covariant derivative string

may be expanded as DaD
c = 1

2
{Da,Dc} + 1

2
[Da,Dc]. Only the anticommutator part is dependent on the

Riemann tensor, however its contribution vanishes due to the identity for (anti-)selfdual tensors: T ab−T c+
b =

T cb−T a+
b .
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Consider the prepotential:

F =
DABCXAXBXC

X0
, (4.3)

and the ansatz

e2U(r) = e−K , (4.4)

where the Kähler potential K is

e−K = i

(
X̄I(z̄)FI(z) − XI(z)F̄I(z̄)

)
. (4.5)

FI(z) = FI(X(z)) and XI(z) are related to the XI , by

XI = e
1
2
KXI(z) . (4.6)

Consider black holes with one electric charge q0 and pA, A = 1, 2, 3 magnetic charges.

One introduces the boost parameters γA, γ0, related to the charges by

pA = hAµ sinh γA cosh γA (no summation)

q0 = h0µ sinh γ0 cosh γ0 , (4.7)

where hA, h0 are constants6 that determine the moduli at infinity. Note that for fixed

charges and non-extremality parameter, a choice of (γA, γ0) is equivalent to a choice of

(hA, h0). The extremal case is recovered in the limit µ → 0; γA, γ0 → ∞, with the charges

held fixed.

Introduce the modified charges

p̃A ≡ hAµ sinh2 γA = αApA (no summation)

q̃0 ≡ h0µ sinh2 γ0 = α0q0 , (4.8)

where αA ≡ tanh γA, α0 ≡ tanh γ0. In the extremal case αA, α0 → 1.

In the extremal supersymmetric case, the vanishing of the gaugino variations under

N = 1 supertransformations, implies generalized stabilization equations, also called the

supersymmetric attractor mechanism [9]. These equations determine the values of the

moduli on the horizon in terms of the electric and magnetic charges. In the non-extremal

case the gaugino variations do not vanish. Consider an ansatz similar to the supersymmetric

stabilization equations of the form

i(XI(z) − X̄I(z̄)) = H̃I

i(FI(z) − F̄I(z̄)) = H̃I , (4.9)

where H̃I , H̃I are harmonic functions

H̃I = hI +
p̃I

r

H̃I = hI +
q̃I

r
. (4.10)

6These parameters are constrained by the asymptotic flatness condition: e2U(∞) = |hIFI(∞) −

hIXI(∞)|2 = 1.
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These equations do not exhibit an attractor behavior, since the moduli on the event horizon

at r = µ depend on the moduli at infinity.

The auxiliary field T−
ab takes the form

T−
01 = iT−

23 =

(
k0

α0(r + k0)
+

k1

α1(r + k1)
+

k2

α2(r + k2)
+

k3

α3(r + k3)

)
1

r
e−U(r) , (4.11)

where

kA ≡ µ sinh2 γA =
µ(αA)2

1 − (αA)2
(no summation)

k0 ≡ µ sinh2 γ0 =
µ(α0)

2

1 − (α0)2
. (4.12)

The ansatz solves the field equations only for equal parameters γA (A = 1 . . . 3).7

Solving the stabilization equations, one obtains the moduli on the horizon in terms of

the charges and the moduli at infinity. The Bekenstein-Hawking entropy takes the form

S =
1

4
A = 2π

√( q

α

)

0
DABC

( p

α

)A ( p

α

)B ( p

α

)C

, (4.13)

where

( p

α

)A

≡ pA

αA
= hAµ cosh2 γA (no summation)

( q

α

)

0
≡ q0

α0
= h0µ cosh2 γ0 . (4.14)

This has the same form as the extremal entropy, with the charges (q0, p
A) replaced by the

(
(

q
α

)
0
,
(

p
α

)A
). Note that, unlike the extremal case, the entropy depends on the values of

the moduli at infinity. In addition, the non-extremal entropy has a different functional

dependence on the original charges since the parameters (αA, α0) depend on the charges.

The near-extremal black holes are described by adding to the extremal black holes the

leading terms in µ, while holding the physical charges fixed. One gets

( p

α

)A

= pA +
1

2
hAµ + O(µ2)

( q

α

)

0
= q0 +

1

2
h0µ + O(µ2) . (4.15)

We see that the near-extremal Bekenstein-Hawking entropy formula has the same struc-

ture as the extremal entropy with a modification of the charges depending on the non-

extremality parameter µ and the asymptotic values of the moduli hA. In the next section

we will construct a class of horizon solutions, where this structure holds with R2-terms, as

in (1.1) and (1.2).

7One can relax the condition on the γA’s by restricting the prepotential to specific choices DABC . For

instance, if only D123 is nonzero, all γA’s may be chosen independently. Alternatively, [7] suggests a method

for finding near-extremal solutions with no restrictions but only in the near-extremal regime.
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4.2 Near-extremal N = 2 black holes with R2-terms

We would like to get an explicit expression for the entropy for the near-extremal black

holes with R2-terms (3.5), as a function of the charges and the moduli at infinity. Consider

black holes with one electric charge q0 and pA, A = 1, 2, 3 magnetic charges.

The bosonic part of the vector field strength F−I
01 is given by the equation of motion:

2(ImFIJ)F−J
01 = G23I − F̄IJF J

23 +
1

2
T−

01Im

(
FI + FIJ X̄J − 32F bAI

(2C0101 − D)

)
, (4.16)

where we have introduced the dual field strength

Gab−
I = 2i

∂(e−1L)

∂F I−
ab

. (4.17)

The magnetic parts of the field strengths are obtained from Bianchi identities, and for a

static spherically symmetric metric can be taken as

F I
23 =

1

r2
e−2U(r)pI

G23I =
1

r2
e−2U(r)qI , (4.18)

where we used gθθ = gφφ/sin2θ = r2e2U(r).

We get

F−0
01 =

1

2ImF00

(
G230 − F̄0AFA

23 + +
1

2
T−

01Im

(
F0 + F0IX̄

I − 32F bA0(2C0101 − D)

))

F−1
01 =

1

4ImF21

(
−F̄21F

1
23 − F̄23F

3
23 +

1

2
T−

01Im(F2IX̄
I)

)
+

+
1

4ImF31

(
−F̄31F

1
23 − F̄32F

2
23 +

1

2
T−

01Im(F3IX̄
I)

)
+

− ImF32

4ImF21ImF31

(
−F̄12F

2
23 − F̄13F

3
23 +

1

2
T−

01Im(F1IX̄
I)

)

F−2
01 = F−1

01 (1 → 2, 2 → 3, 3 → 1) (except “23” in F I
23)

F−3
01 = F−1

01 (1 → 3, 2 → 1, 3 → 2) (except “23” in F I
23) , (4.19)

where F−2
01 , F−3

01 are obtained by cycling the indices of F−1
01 , and we have assumed the

prepotential satisfies

ImFA = ImF bAA
= 0 . (4.20)

With the ansatz given later for the prepotential and moduli, the terms with T−
01 in

F−1
01 , F−2

01 , F−3
01 are zero, and the latter further simplify to

F−A
01 =

i

2
FA

23 . (4.21)

In addition, due to spherical symmetry:

F−I
23 = −iF−I

01 . (4.22)
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The auxiliary field D may be determined by the constraint on the nonlinear mul-

tiplet (2.7). We will however retain D, appearing in the hatted fields (2.4) of the La-

grangian (2.3), as an independent degree of freedom. The nonlinear multiplet fields then

appear only in the last line of (2.3),8 and one can easily solve for them. The bosonic parts

of the equations of motion of Mij and Va give

Mij = 0

Va = 0 . (4.23)

In the second equation we used eDaVa = ∂a(eVa), which holds in the K-gauge and can

be dropped in the D-gauge (2.9) as a total derivative term in the Lagrangian. The V -

gauge (2.9) sets Φi
α = δi

α, and this gives DaΦi
α = 0 for a solution where the SU(2)

connection is zero, which we will consider. Therefore we remain with

D = −1

3
R . (4.24)

The area of the horizon A, the Weyl tensor C0101, and the Ricci scalar R are all

calculated from the metric. It remains to find solutions for the metric, the moduli XI(z),

and the auxiliary field T−
01. In addition, for solving the equations of motion, we will

need solutions for the U(1) connection Aa and the SU(2) connection V i
a j , which in the

supersymmetric case could be taken as zero. We will make an ansatz for the solution on

the horizon, which is an extension of both the extremal case with R2-terms (see [1]) and

the non-extremal case without R2-terms. One may consider the ansatz of the non-extremal

case for the metric (4.1), (4.4), (4.2), the modified stabilization equations (4.9) which give

the moduli, and the auxiliary field (4.11), with the R2 prepotential (2.1). However this

proves to be insufficient, and since we will consider a near-extremal solution, we introduce

linear µ-corrections to the fields.

Our ansatz is

F =
DABCXAXBXC

X0
+

DAXA

X0
Â (4.25)

ds2 = −e−2U(r)f(r)dt2 + e2U(r)(f(r)−1dr2 + r2dΩ2)

e2U(r) = e−K(1 + µβU )

f(r) =
(
1 − µ

r

)
(1 + µβf )

XA(z) = − i

2
xA(1 + µβA)

X0(z) =
1

2

√
DABCxAxBxC − 4DAxAÂ(z)

x0
(1 + µβ0)

T−
01 = iT−

23 =

(
k0

α0(r + k0)
+

k1

α1(r + k1)
+

k2

α2(r + k2)
+

k3

α3(r + k3)

)
1

r
e

1
2
K(1 + µβT ) ,

8One may think of this last line as part of a Lagrangian multiplier which cancels the linear dependence

of the original Lagrangian on D.
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where

xA ≡ αApA

kA
+

αApA

r
(no summation)

x0 ≡ α0p0

k0
+

α0q0

r
, (4.26)

and

Â(z) = e−KÂ (4.27)

= −4e−K(T−
01)

2

= −4

(
k0

α0(r + k0)
+

k1

α1(r + k1)
+

k2

α2(r + k2)
+

k3

α3(r + k3)

)2
1

r2
(1 + µβT )2 .

βU , βf , β1, β2, β3, β0, βT are finite constants,9 and e−K also contains β’s. Note that besides

the explicit µ-corrections above, some of the fields will also have implicit µ dependence via

e−K and A(z).

In addition we assume

Aa = 0

V i
a j = 0 . (4.28)

The vanishing of the SU(2) connection implies also Y I
ij = 0 [10].

For our ansatz to constitute a solution, it must satisfy the equations of motion on the

horizon for the metric, the moduli XI(z), the auxiliary field T−
01, and the U(1) connection.

The equation of motion for the SU(2) connection is always satisfied by the vanishing SU(2)

connection, for a bosonic background and with our choice of V -gauge (also assuming no

hyper-multiplet scalars). This is since the SU(2) connection and its derivatives then appear

in the Lagrangian always at least in quadratic form. In general the above ansatz is not

a solution to the equations of motion. However, we have found that it may constitute a

near-extremal horizon solution if we require equal boost parameters and DABCpApBpC = 0.

The latter condition on the charges implies the vanishing of the classical horizon area in

the extremal limit.

In the near-extremal regime we linearize the algebraic equations of motion (after sub-

stituting the ansatz) in the small expansion parameter µ ≪ 2kA, 2k0. This must be done

after taking the horizon limit r → µ, since for a small but finite µ we want to have two

topologically distinct horizons. Also, we must remember that the boost parameters αA, α0

depend on µ with constant kA, k0:

αA =

√
kA

kA + µ
(no summation)

α0 =

√
k0

k0 + µ
. (4.29)

9With more general r-dependent corrections, one has to note that the location of the horizon may change.
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In our linear approximation the shifted charges are

( p

α

)A

= pA

(
1 +

µ

2kA

)
+ O(µ2) = pA +

1

2
hAµ + O(µ2) (no summation)

( q

α

)

0
= q0

(
1 +

µ

2k0

)
+ O(µ2) = q0 +

1

2
h0µ + O(µ2) . (4.30)

Here hA, h0 do not necessarily correspond to the asymptotic values of the moduli, since

our ansatz is only shown to constitute a solution on the horizon. Next, we choose equal

boost parameters: α0 = α1 = α2 = α3. Without R2-terms this would be the non-extremal

version of the double-extremal black hole. Denote: k ≡ k0 = k1 = k2 = k3. Finally,

DABCpApBpC = 0 would imply a vanishing of the classical horizon area for the extremal

R-level case [11].

Under these three restrictions our ansatz (4.25) solves the field equations, with the β’s

for some simplified cases given in appendix A. We note that we have also found solutions

with DABCpApBpC 6= 0, where the entropy does not have a simple form. In appendix B

we comment on the derivation of the metric field equations.

For the above ansatz, the area of the horizon, the Ricci scalar and the Weyl tensor on

the horizon read

A = 4πµ2e−K(r=µ)

R =
µβf

8
√

q0DApA
+ O(µ2)

C0101 = − µβf

48
√

q0DApA
+ O(µ2) . (4.31)

Substituting the solution in the generalized entropy formula for the near-extremal R2

case (3.5) yields the explicit entropy:

S = 32π
√

q0DApA

(
1 +

µ

2k

)
+ O(µ2) (4.32)

= 32π

√( q

α

)

0
DA

( p

α

)A

= 32π

√(
q0 +

1

2
h0µ

)
DA

(
pA +

1

2
hAµ

)
+ O(µ2) , (4.33)

where we must choose the signs of the charges such that the result is real. Note that

due to the assumption of equal boost parameters, hA = pA h0
q0

. This has the same form

of the corresponding extremal R2 case where DABCpApBpC = 0, with the charges q0, p
A

substituted by the shifted charges
(

q
α

)
0

(
p
α

)A
. This is similar in fashion to the transition

from the R-level extremal entropy to the near-extremal entropy. It would be interesting to

compare the obtained expression for the entropy, to a corresponding microscopic statistical

entropy, which is currently unknown.

As in the extremal R2 case, we have retained only the tree-level α′ F -terms, requiring

that the large volume approximation is valid near the horizon by imposing: |q0| ≫ |p3| ≫ 1.
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If the prepotential does not contain higher powers of Â, the condition of large charges may

be used to constrain any R4 or higher D-term corrections. However, we cannot rule out

other contributions to the field solutions and entropy coming from D-terms in the R2-level.

The Hawking temperature for our static spherically symmetric black hole is given by

T = − ∂rgtt

4π
√−gttgrr

∣∣∣∣
horizon

=
µ

64π
√

q0DApA
+ O(µ2) . (4.34)

In this approximation, replacing the charges with the shifted charges does not change the

result.

Since the solutions have been constructed only on the horizon, and without the su-

persymmetry property, one still needs to analyze whether an interpolating solution exists

which smoothly connects the horizon to asymptotically flat space. This is a prerequisite

for the existence of a corresponding black hole and for the validity of the Wald entropy

formula (3.1).
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A. Solutions of the field equations

Following are the explicit solutions for the β’s of (4.25) which satisfy the equations of

motion, under the discussed restrictions. All β’s must satisfy: |β| ≪ µ−1. In all the

following, βU is a real free parameter which rescales the Kähler potential relatively to the

metric (which is actually a gauge freedom). Our calculations were done using Maple with

GRTensor.

(i) For the case D113 = D133 = D223 = D233 = D123 = D1 = D2 = 0:

βf = −3D333p
3p3

256kD3

2β0 = βf

2β1 = 2β2 = βf − βU

2β3 = βf − 1

k
− βU

2βT =
1

k
− βU . (A.1)

(ii) For the case D112 = D122 = D223 = D233 = D222 = D123 = D2 = 0:

βf =
3X2

256kY
2β0 = βf

2β1 = βf − D3p
3X

kY
− 1

k
− βU

– 13 –



J
H
E
P
1
2
(
2
0
0
7
)
0
5
0

2β2 = anything

2β3 = βf +
D1p

1X

kY
− 1

k
− βU

2βT =
1

k
− βU , (A.2)

where

X =
1

2

(
D333p

3p3p3 + D133p
1p3p3 − D113p

1p1p3 − D111p
1p1p1

)
(A.3)

Y =
(
D1D333p

3p3 + D1D133p
1p3 + D3D113p

1p3 + D3D111p
1p1

)
p1p3 .

Note that here it is assumed that Y 6= 0 and

D333p
3p3p3 + 3D133p

1p3p3 + 3D113p
1p1p3 + D111p

1p1p1 = 0 . (A.4)

(iii) For the case D112 = D122 = D113 = D133 = D223 = D233 = D111 = D222 = D333 = 1,

D123 = −7
2 , and p1 = p2 = p3:

βf = 0

2β0 = 0

2β1 = 2β2 = 2β3 = −1

k
− βU

2βT =
1

k
− βU . (A.5)

B. Derivation of the metric field equations

In order to simplify the derivation of the equations of motion, we write the Lagrangian in a

form which is explicit in the scalar degrees of freedom. There are some subtleties regarding

the degrees of freedom of the metric. Here we will identify these degrees of freedom and

how they should be accounted for in the computation.

Let L(ψ, ∂µψ, ∂µ∂νψ) be a Lagrangian density depending on the scalar field ψ and

its first and second space-time derivatives. The equation of motion for ψ is given by the

Euler-Lagrange equation:

∂L
∂ψ

− ∂µ

(
∂L

∂(∂µψ)

)
+ ∂µ∂ν

(
∂L

∂(∂µ∂νψ)

)
= 0 . (B.1)

In our case, the action contains curvature tensors which are built from second order deriva-

tives. Thus we need to take the full second order variation. Alternatively, one may integrate

the action by parts, and take the usual first order variation.

We assume a static and spherically symmetric metric. A general form of such a metric is

ds2 = −e−2U1(r)dt2 + e2U2(r)dr2 + e2U3(r)r2dΩ2 . (B.2)

Correspondingly, we will get three equations of motion for U1(r), U2(r), U3(r). Any metric

has only two real degrees of freedom: 16 − 6 (symmetric components) - 4 (Bianchi iden-

tities) - 4 (coordinate redefinitions) = 2. So our static and spherically symmetric metric
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really contains only two independent r-function degrees of freedom. Thus one of the three

equations of motion will be redundant.

We will explain why the above policy is nevertheless advantageous. One may set e.g.

U2(r) = U1(r) by a redefinition of the r-coordinate. This choice of “gauge” may result in

a trivial equation of motion for U1(r), leaving us with only one independent equation of

motion. The missing equation of motion has to be obtained from the requirement that

the action is invariant under the choice of gauge. I.e. the variation of the non-gauged-fixed

action with respect to U2(r) must vanish. This is also known as a Hamiltonian constraint.

However, this is just the original equation of motion for U2(r) that we threw away by the

gauge fixing. Thus we will simply retain all three degrees of freedom in the metric, which

will give two independent equations of motion.

One may now be concerned about other gauge fixings implicit in the choice of coordi-

nates of (B.2), e.g. vanishing off-diagonal components or gθθ = gφφ/sin2θ. However, our

metric is the “maximally general” metric preserving the assumed isometries of the solution,

namely staticity and spherical symmetry [12]. For such a solution, the equations of motion

corresponding to the trivial metric components would be automatically satisfied and would

not yield new constraints.

In order to be consistent with the notation of our solution (4.25), we will actually use

the metric:

ds2 = −e−2U1(r)f(r)dt2 + e2U2(r)f(r)−1dr2 + e2U3(r)r2dΩ2 , (B.3)

where f(r) is given. The solution to the equations of motion is given by

U1(r) = U2(r) = U3(r) = U(r) , (B.4)

where U(r) is given. When deriving the equations of motion, we must retain the separate

degrees of freedom of the metric.

The fields F−I
ab , T−

ab in our solution, are given as the anti-selfdual parts written with

tangent space indices. In this form, these fields contain metric components, while the

metric-independent fields are F I
µν , Tµν . Let us denote by F−I

01 (r), T−I
01 (r) the (0, 1) compo-

nents of these fields as given in our solution (4.19), (4.25), before we explicitly introduced

the separate metric degrees of freedom. When these fields appear in the Lagrangian ex-

plicitly (including via the hatted fields (2.4)), they should be rewritten as

F−A
01 = iF−A

23 = e2U(r)−2U3(r)F−A
01 (r)

F−0
01 = iF−0

23 = eU1(r)−U2(r)F−0
01 (r)

T−
01 = iT−

23 = eU1(r)−U2(r)T−
01(r) . (B.5)

Alternatively, one may work with the F I
µν , Tµν form and put appropriate projection oper-

ators in the Lagrangian.
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